Pollard Rho on the PlayStation 3

Joppe W. Bos', Marcelo E. Kaihara', and Peter L. Montgomery?
! EPFL IC LACAL, CH-1015 Lausanne, Switzerland
{joppe.bos, marcelo.kaihara}@epfl.ch
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
peter.montgomery@microsoft.com

Abstract. This paper describes a high-performance PlayStation 3 (PS3)
implementation of the Pollard rho discrete logarithm algorithm on ellip-
tic curves over prime fields. A record has been set using this implemen-
tation by solving an elliptic curve discrete logarithm problem (ECDLP)
with domain parameters from a currently standardized elliptic curve over
a 112-bit prime field. Solving this 112-bit ECDLP instance required 62.6
PS3 years. Arithmetic algorithms have been designed for the PS3 to
exploit the SIMD architecture and the rich instruction set of its com-
putational units. Though our implementation is targeted at a specific
112-bit modulus, most of our implementation strategies apply to other
large moduli as well.

Keywords: Elliptic curve discrete logarithm, Pollard rho, Cell broad-
band engine, SIMD arithmetic

1 Introduction

Elliptic curve cryptography (ECC) [20, 23] is becoming increasingly popular since
it allows smaller key-sizes [22] to obtain the same level of security as other widely
used public-key cryptographic approaches such as RSA [30]. Government and
industry have standardized the use of ECC in, for instance, the Digital Signature
Standards (DSS) [38] and the Standards for Efficient Cryptography (SEC) [6].
Here, elliptic curves defined over prime fields ranging from 192 to 512 bits, and
from 112 to 512 bits are standardized, respectively.

Processor development seems to be moving away from a single-core towards
a multi-core design in order to scale performance through parallelism. The Cell
broadband engine (Cell), with its unique heterogeneous architecture, is an inter-
esting example. Its single instruction multiple data (SIMD) organization along
with its rich instruction set makes it attractive for accelerating cryptographic
operations [8,2,7,3] and cryptanalysis [34, 35].

In this article, the security of ECC — using elliptic curves over prime fields
— is evaluated using the relatively low-priced and broadly available multi-core
Cell architecture, which is the heart of the video game console PlayStation 3
(PS3). For this purpose, high-performance SIMD arithmetic algorithms have
been designed to exploit the features of the instruction set of the Cell. These

35 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

SIMD algorithms form the basis of our implementation of the Pollard rho [28]
algorithm, the fastest known algorithm to solve the Elliptic Curve Discrete Log-
arithm Problem (ECDLP). Our implementation has been used to set a record by
solving an ECDLP with parameters taken from a 112-bit standardized elliptic
curve. Solving this problem required 62.6 PS3 years and ran on a PS3 cluster of
more than 200 PS3s in the period January - July, 2009. When run continuously,
using the latest version of our code, the calculation would have taken 3.5 months.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the Cell broadband engine. Section 3 recalls the Pollard rho discrete loga-
rithm algorithm together with some optimizations. Section 4 presents efficient
arithmetic algorithms aimed at the 112-bit elliptic curve designed to exploit
the features of the Cell architecture. Section 5 gives implementation details and
performance results. Section 6 concludes the paper.

2 Cell Broadband Engine Architecture

The Cell architecture [16], developed by Sony, Toshiba and IBM, has as a main
processing unit, a dual-threaded 64-bit Power Processing Element (PPE) which
can offload work to the eight Synergistic Processing Elements (SPEs) [11, 36].
The SPEs are the workhorses of the Cell and the main interest in this article.
The SPE consists of a Synergistic Processor Unit (SPU) and a Memory Flow
Controller (MFC). Each SPU has a register file of 128 entries called vectors,
or quad-words, of 128-bit length and to its own 256-kilobyte Local Store (LS)
with room for instructions and data. The main memory can be accessed through
explicit Direct Memory Access (DMA) requests to the MFC. The SPUs have
a 128-bit SIMD organization allowing sixteen 8-bit, eight 16-bit or four 32-bit
integer computations in parallel. The SPUs are asymmetric processors, having
two pipelines, denoted as even and odd pipelines. This means that two instruc-
tions can be dispatched every clock cycle. Most of the arithmetic instructions
are executed on the even pipeline and most of the memory instructions are exe-
cuted on the odd pipeline. It is a challenge to fully utilize both pipelines always
at the same time. The SPEs have no hardware branch-prediction. Instead, the
programmer (or the compiler) can provide hints to the instruction fetch unit
where a branch instruction will most likely jump to.

An additional advantage of the SPEs is the rich instruction set. For instance,
among the available instructions all distinct binary operations f : {0,1}?> —
{0,1} are present. The SPEs are equipped with a 4-SIMD multiplier which can
compute four 16-bit integer multiplications simultaneously per clock cycle. In
addition, a multiply-and-add instruction which performs a 16 x 16-bit unsigned
multiplication, and an addition of a 32-bit unsigned operand to the 32-bit prod-
uct is provided and has the same time cost as a single 16 x 16-bit multiplication.
This instruction requires the 16-bit operands to be placed in the higher positions
of the 32-bit word elements of the vectors. Note that carries are not generated
for these instructions.

SHARCS ’09 Workshop Record 36

Pollard Rho on the PlayStation 3

One of the first applications of the Cell was to serve as the main processor
for the Sony’s PS3 video game console. The Cell contains eight SPEs, and in
the PS3 one of them is disabled. One of the remaining SPEs is reserved by
Sony’s hypervisor (a software layer which is used to virtualize devices and other
resources in order to provide a virtual machine environment to operating systems
such as Linux OS). All in all, six SPEs can be accessed when the Linux operating
system is installed on a PS3.

3 Preliminaries

3.1 Elliptic Curves over F,

Let IF), be a finite field of characteristic p # 2,3 and a, b € IF,, satisfy the inequality
4a3 + 27b* # 0. Informally an elliptic curve E(F,) is defined as the set of points
(x,y) € F), x F, which satisfy the affine Weierstrass equation [33]:

y? = 2° + az + b. (1)

These points, together with a point at infinity, denoted as O, form an abelian
group where the group operation is point addition and the zero point is the point
at infinity. Let P,Q € E(F,) \ {O}, where P = (z1,y1) and @ = (z2,y2). Then
—P = (x1,—y1). If P # —Q then P+ Q = (x3,y3) where

Y2 — Y1 it P£Q
To — 1

$3=/«02—331—9€2> ys = p(r1 — x3) —y1 with p = 902 (2)
TS po Q.
211

3.2 The Pollard Rho Algorithm

Let E be an elliptic curve over F,,, P € E(F,) a point of order n and Q = [P € (P).
Here p is prime and [,n € Z, in practice p and n are known. The most efficient
algorithm in the literature to find [mod n for generic curves is Pollard’s rho
algorithm [28]. The underlying idea of this method is to search for two distinct
pairs (c;, d;), (¢j,d;) € Z/nZ x Z/nZ such that

Czp‘i‘sz = CjP+de.

Then, the discrete logarithm of @) to the base P, i.e. | = logp @, can be obtained
by computing
= (Ci - Cj)(dj — di)_l mod n.

This calculation might fail if the inverse of (d; — d;) does not exist. In practice,
n is prime since one first reduces the calculation of the discrete logarithm to the
computation of the discrete logarithm in the prime order subgroups of (P) [27].

The occurrence of two such distinct pairs is called a collision. Given an iter-
ation function f: (P) — (P), the Pollard rho method calculates a sequence of

37 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

Xat2

X)\-i-u—l

X>\+u—2

Xy

X

(a)

Fig. 1. Representation of the p and X\ shape of the single-instance Pollard rho 1(a) and
the multi-instance Pollard rho method 1(b) respectively. The points X;,Y; represent
distinguished points from two different walks.

points X; 11 = f(X;), i > 0. The sequence of points represents a walk through
the set of points (P). Given X; = ¢; P + d;Q and ¢;,d; € [0,n—1], f updates ¢;11
and d;11 and computes X;11 as X;11 = ¢;11 P +d;11Q. The sequence is started
from a random and known point Xy € (P) by selecting random values for ¢y and
dp. This sequence of points eventually collides (as operations are performed over
a finite cyclic group). Let us denote A and u > 1 as the smallest numbers such
that X, = X4, holds. The value A is called the tail and p the cycle length,
graphically the walk through the set of points forms a p shape: see Fig. 1(a).
Assuming the iteration function is a random mapping of size n = |[(P)], i.e. f
is equally probable among all functions F' : (P) — (P), Harris showed that the
expected values of A and p are A = pu = \/? when n — oo [15]. The advantage
of the Pollard rho method is that it uses a negligible amount of memory, by
using Floyd’s cycle finding method [19], compared to the baby-step-giant-step
[32] method which has the same asymptotic run-time complexity.

SHARCS ’09 Workshop Record 38

Pollard Rho on the PlayStation 3

3.3 Parallelization

In [39], van Oorschot and Wiener present a time-memory trade-off method based
on the work by Quisquater and Delescaille [29]. In order to run many instances
of the Pollard rho method on different processors, in order to speed up the
calculation of the discrete logarithm, each instance starts with a unique value.
The idea is to distinguish points in the walk using a specific property and share
the distinguished points among all the processors by communicating them to a
central database. Distinguished points (DTP) can be, for example, those with an
z-coordinate that is divisible by 2™ for some m > 0, after being normalized to
[0, p— 1]. The search for a collision among the DTPs is performed in this central
database. This technique leads to a linear speed-up on the number of processors.
Graphically, colliding walks form a A shape: see Fig. 1(b).

3.4 Adding Walks

The iteration function proposed by Pollard in [28] divides (P) into three different
partitions: one partition is used to double the current point while in the other
two partitions a constant is added. Teske introduces in [37], based on the work by
Schnorr and Lenstra [31], a class of walks for the iterating function of Pollard’s
rho method which achieves a similar performance, in terms of the number of
iterations needed, compared to a random mapping. The main idea consists in
dividing (P) into r different partitions using a partition function h : (P) —
[0,r —1].

To each partition a point is associated; for partition j the values m; and n;
are randomly chosen in the initialization phase and R; = m; P4n;Q) is associated
with this partition. If the parallelized version of the Pollard rho method is used,
the same m;, n;, h should be used in all instances.

The iteration function is defined as

Xiv1 = f(Xi) = Xi + Ry(x,)- (3)

It is shown in [37] that values of r > 16 partitions provide performance com-
parable to the expected values from random mappings, overcoming a loss of
approximately 20 percent of computation time that occurs when Pollard’s orig-
inal iteration function is used.

3.5 Montgomery’s Simultaneous Inversion

Elliptic curves can be parameterized in different ways, resulting in different oper-
ation counts (cf. [1]). Since many independent walks can be processed conjointly,
Montgomery’s inversion technique [25], which enables to trade M inversions for
3(M — 1) multiplications and one inversion, can be used. This places the affine
Weierstrass coordinate system as the most suitable candidate. For a point addi-
tion, the cost of computing the z-coordinate is four multiplications, one squaring

and %th inversion, when M group additions are processed in parallel. By reusing
intermediate results of this computation, the y-coordinate can be computed with
an additional cost of one field multiplication, see Equation (2).

39 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

(128-bit wide vector
X[0] =] 16-bit | 16-bit |
S—— N—\—
high low
[Xo, X1, X2, X3] = X[=] | | | |
X[n—1] =| \ | ! | ! | |
—_——
the most significant position of X7 is located in
either the lower or higher 16-bit of the 32-bit word

Fig. 2. Four numbers arranged, in either all lower or higher parts.

3.6 The Negation Map

The computation of the negative of a point P = (z,y), i.e. —P = (z,—y), is
computationally cheap. This observation is used by Wiener and Zucherato [40]
to reduce the search space by a factor of two. Given an equivalence relation ~
on (P) the idea is to iterate over the set of equivalence classes (P)/~. This can
be accomplished by computing + P and selecting the point with the smaller y-
coordinate after being normalized to [0, p — 1]. When the negation map is used,
almost all equivalence classes have two elements, giving a theoretical speed-up
factor of v/2. This technique can be applied to all elliptic curves. In general, if
most equivalence classes contain m points, the search space is reduced by a factor
m. Hence, the total required number of iterations is reduced by a factor \/m.
Other examples of equivalence relations, aimed at anomalous binary curves, and
more detailed information can be found in [40, 13, 10].

4 112-bit Elliptic Curve Domain Parameters over [,

As of 2009, the smallest standardized elliptic curve is over a 112-bit prime field.
This elliptic curve is standardized in the Standard for Efficient Cryptography
(SEC), SEC2: Recommended Elliptic Curve Domain Parameters [6] as curve
secpl12r1 and in the Wireless Transport Layer Security Specification [12] as
curve number 6.

4.1 Integer Representation in the Cell

For a high-performance implementation of arithmetic algorithms on the Cell,
vectorization techniques (cf. [9]) are applied and data are represented using a
4-SIMD organization. If the radix of the number system is r = 2%, with 0 <
w < 32, then a b-bit number is represented using n = [%-‘ digits. In the 4-SIMD
representation, four b-bit numbers Xg, X7, X5, and X3 are stored in n vectors.

SHARCS ’09 Workshop Record 40

Pollard Rho on the PlayStation 3

Each vector X[j], 0 < j < n, holds four w-bit digits of the four numbers that
correspond to the same digit position. The notation [Xg, X1, X5, X3] means that
the four numbers Xg, X1, X3, and X3 are grouped using 4-SIMD and operations
are applied in parallel digit-wise (for the same digit positions) for all the four
numbers. For modular multiplication, w = 16 is selected, cf. Section 4.2, and
each of the n vectors is composed of four 32-bit word elements, where the 16-bit
digits of four numbers are stored either in the higher or lower positions of these
32-bit word elements. Hence, each of the four b-bit numbers is represented as

X, = Y by (Lﬂﬂj mod r) for i € {0,1,2,3) and & € {0,1}, where & is 1
if data are placed in the higher bit positions and 0 otherwise. Fig. 2 depicts the
data structure. For modular inversion, w = 32 and each of the four b-bit numbers
is represented as X; = Z;:Ol rd (L%J mod r> for i € {0,1,2,3} and adjusting

the value n accordingly.

4.2 Arithmetic

The standardized elliptic curve secpl12rl is over F,. Here p is prime and has
. 2128 _g SRT .
the special form: p = {77575 In order to speed up modular multiplication and
subtraction in the Pollard rho algorithm we use a redundant representation

taking a larger modulus p = 2'2® — 3 = 116949 - p.

Modular Multiplication One computationally intensive operation in the point
addition on the elliptic curve is modular multiplication. Furthermore, as Mont-
gomery’s simultaneous inversion technique is used to trade one modular inversion
by approximately three modular multiplications, the performance of the Pollard
rho algorithm highly depends on the performance of the modular multiplication.

In order to increase computation speed, operations are performed in a residue
class of a larger modulus p. This redundant representation significantly accel-
erates modular reduction and successive operations can be performed in this
representation.

Let us define a reduction function fR.

Definition 1. Let R = 2'28 and p = R — 3. Given an integer 0 < x < R?
represented in radiz R; © = xp, - R+, define a map R : Z/R*Z — 7. R*Z such
that

y =R(z) = (x mod R) + 3 - {%J

Note that, if y = R(z) then z = y mod p and y < x.

Furthermore, with high likelihood R can be used to quickly reduce values
modulo p. Because 0 < SR(z) < 4R, for any = with 0 < x < R2, it follows that
0 < R(R(z)) < R+9. It is easily seen that R+ 9 can be replaced by R + 6.
Assuming that all values have more or less the same probability to occur, the
result will actually most likely be < p. Although counterexamples are simple to
construct and we have no formal proof, we can confidently state the following.

41 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

Proposition 1. For independent random 128-bit non-negative integers r and y
there is overwhelming probability that 0 < R(R(z - y)) < p.

Computation of integer multiplication is performed using the data repre-
sentation described in Section 4.1. In order to take advantage of the multiply-
and-add instruction, we use the following property. If 0 < a,b,c,d < r, then
a-b+c+d < r2. Specifically, this property enables the addition of a 16-bit word
to the result of a 16 x 16-bit product, used for the multi-precision multiplica-
tion and accumulation, and an extra addition of 16-bit word, which is used for
carry propagation. The multi-precision products are calculated using the school-
book method since the modulus is relatively small and the multiply-and-add
instruction can be exploited. Our tests show that this approach is faster, for this
particular size on this platform, compared to other methods such as Karatsuba
multiplication [18].

Modular Subtraction The modular subtraction algorithm, which can be im-
plemented as a subtraction with a conditional addition, is a basic operation. See
for implementation details Section 5.1.

Modular Inversion We consider modular inversion of one positive integer
x in the residue class of an odd modulus p. Taking into account the memory
constrained environment of the PS3s, and the 4-SIMD organization of the SPEs,
the most suitable algorithm seems to be the Montgomery algorithm for the
classical modular inverse [17]. This algorithm computes modular inversion in
two phases:

1

1. The computation of the almost Montgomery inverse ="' -2* mod p for some

known k.

2. A normalization phase where the factor 2 mod p is removed.

In order to exploit the 4-SIMD organization, variables Ay, By, As and By are
grouped and denoted as [A, By, A, Ba]. Then, the resulting 4-SIMD Extended
Binary GCD algorithm is depicted in Algorithm 1.

In the algorithm, A; >> t; means that variable A; is shifted by t; bits
towards the least significant bit position. Similarly, By << t3 means that variable
By is shifted to the most significant bit position by ¢, positions. Assignments
such as [A1, By, A, Bo] := [A1 >> t1,B1 << t9, Ay >> t9, By << t1] mean
that the four operations (shift operations in this case) are performed in parallel
in SIMD. Note that, in the algorithm, operations A; >> t; and Ay >> t5 shift
out only zero bits.

SHARCS ’09 Workshop Record 42

Pollard Rho on the PlayStation 3

Algorithm 1 4-SIMD Extended Binary GCD

p:r" P <p<r™and ged(p,2) =1
z:0<x<r® and ged(z,p)=1
Output: z = % mod p

1: [A1, B1, A2, Ba] :=[p, 0,2, 1] and [k1, k2] := [0, 0]
2: while true do

3 /* Start of shift reduction. */

4 Find #; such that 2% | Ay

5: Find t2 such that 22| A,
6: [k?l, k?z] = [k71 +t1, ko + tz]
7.
8

Input:

[Al,Bl,AQ,BQ] = [A1 >>t1, B << tQ,AQ >> ta, B << tl]

9: /* Start of subtraction reduction. */
10: if (A1 > As) then

11: [Al,Bl,Az,Bz] = [Al —Az,Bl —BQ,AQ,BQ]
12: else if (A2 > A,) then

13: [Al,Bl,Az,Bz] = [Al,Bl,AQ—Al,Bz—Bl]
14: else

15: return z:= By - (27 152y mod p

16: end if

17: end while

Let g = ged(x, p) and y be a solution of zy = g (mod p). Algorithm 1 has
invariants (for j = 1,2)
A;(2MHPy) = Big (mod p),
ged(As1, 42) = g,
A1By — A3 By = p, (4)
MA <p, 2MA; <,
Bi<0<B,, k>0, Aj>0.

At line 15, a modular multiplication removes powers of 2 from the output. We
can bound the exponent ki + ko by

Mtk < (27 41)(272 A,) < p.

We have A} = Ay = ged(Aq, Ag) = g. If A3 > 1 then we report an error to the
caller. Otherwise g = 1. The output z = By - (27%1752) satisfies

z=2g= By- (27" 7R g = (A2F1TF2g)2 R —F2 = Aoy — 9 (mod p).

If we pick t; and t; as large as possible during a shift reduction, then the new A,
and A5 will both be odd. The next subtraction and shift reductions will reduce
A1+ As by at least a factor of 2.

The values of A1 and As are bounded by p and z, respectively. The invariant
p = Ale — A2B1 Z Bz — Bl bounds Bl and BQ.

43 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

Operation Estimated #cycles| Quantity |Estimated #cycles
per operation |per iteration| per iteration
Modular multiplication 53 6 318
Modular subtraction 5 6 30
Montgomery reduction 24 1 24
Modular inversion 4941 F%o 12
Miscellancous 69 1 69
|Total | 453

Table 1. Estimated number of clock cycles for different operations of our Pollard rho
implementation in one SPU.

4.3 The Distinguished Point and Partition Determination

Each application of an r-adding iteration function requires the determination of
the partition to follow for calculating the next point; see Section 3.4. Further-
more, the current unreduced point needs to be inspected for distinguishedness.
Since we are performing arithmetic modulo p, the coordinates of the elliptic
curve point need to be reduced modulo p, i.e. this point cannot be used to
uniquely determine either the partition number or the the distinguished point
property. Given a point P = (7, y), the idea is to compute a partial Montgomery
reduction [24] instead of normalizing modulo p which requires a full modu-
lar reduction at each iteration. This faster reduction computes z - 276 mod p,
where the result of this operation is in [0,p — 1]. The uniqueness of both the
distinguished point property and the partition number is ensured.

5 Experimental Results

In this section, we present the performance analysis of our Pollard rho imple-
mentation using the techniques described in Section 4 and show how this imple-
mentation has set a record by solving a 112-bit ECDLP. The previous record in
the computation of an ECDLP is for an elliptic curve over a 109-bit prime field
with parameters taken from Certicom’s ECC challenge [4]. That problem was
solved in the year 2002 using “10* computers (mostly PCs) running 24 hours a
day for 549 days” [5].

5.1 Implementation details

Our software implementation is optimized for the SPE-architecture of the Cell
and uses all the techniques described in Section 3 with the exception of the nega-
tion map. This is because, the computational overhead for this technique, due
to the conditional branches required to check for fruitless cycles [13], results (in
our implementation on this architecture) in an overall performance degradation.
As an iteration function a 16-adding walk is used. In order to take advantage
of the Montgomery simultaneous inversion technique, 400 walks are processed

SHARCS ’09 Workshop Record 44

Pollard Rho on the PlayStation 3

in parallel. The number of concurrent walks is adjusted to the local storage re-
strictions of the PS3s. At the cost of 16 counters of 32 bits each per process,
updating the values ¢;+1, d;11 can be postponed until a distinguished point is
found.

Note that, in our implementation, several things can go wrong: we may have
dropped off the curve because we should have used curve doubling (in the unlikely
case that X; = Rj,(x,), or in the unlikely case of incorrect reduction modulo p,
cf. Prop. 1), or a wrong point may by accident again have landed on the curve,
and have nonsensical ¢;, d; values. Just as the correct iterations, these wrong
points will after a while end up as distinguished points. Thus, whenever a point
is distinguished, we check that it indeed lies on the curve and that the equation
X; = ¢;P + d;Q holds for the alleged ¢; and d;. Only correct distinguished
points are collected. If we hit upon a process that has gone off-track, all 400
concurrent processes on that SPU are terminated and restarted, each with a
fresh startpoint. This type of error-acceptance leads to enormous timesavings and
code-size reduction at negligible cost: we have not found even a single incorrect
distinguished point during in the process of solving this ECDLP instance.

A summary of estimated clock cycles needed for each operation is detailed in
Table 1. The 69 miscellaneous clock cycles stated in this table include the cost for
fetching the constant for the 16-adding walk, checking if a point is distinguished
and if so perform sanity checks and the overhead of conditional branches in the
main and the simultaneous inversion loop.

Modular Multiplication Our implementation of the modular multiplication
method, which is an 128-bit modular multiplication since we work with integers
reduced modulo p, as described in Section 4.2, is aimed at filling both the odd
and even pipelines, to reduce the overall latency. The 4-SIMD multiplication is
done by using the multiply-and-add instruction. Extraction of higher and lower
16-bit parts of a 32-bit word elements is done by using two shuffle operations
which are performed in the odd pipeline.

Fast modular reduction, cf. Prop. 1, is implemented using eight multiply-and-
add instructions, seven additions, eight extractions of the lower parts and seven
extractions of the higher parts for the first reduction phase. For the second reduc-
tion, only one multiply-and-add instruction is used since the maximum number
that can be added in the second reduction is 4. Most likely no further carries are
generated and modular reduction is complete. This condition is checked using
an conditional “if” branch with a branch-hint. In the unlikely case that carries
are generated, a penalty is paid and the remaining part of the reduction code is
executed.

The number of clock cycles needed for a modular multiplication is 53, as
shown in Table 1. This number is an average over a long benchmark run using
input data from the Pollard rho algorithm.

Modular Subtraction Modular subtraction is performed using operands rep-
resented in 4-SIMD with radix 232. A multi-word subtraction (four extended

45 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

subtractions and four generate borrow instructions), comparison (one compari-
son of the borrow), mask (four AND instructions) and addition (four extended
additions and three extended carry generation instructions) are performed in
order to avoid expensive branches. Conversions back and forth from represen-
tations using radix 2'% and 232, in 4-SIMD, are performed using eight shuffle
operation for each conversion.

All in all, 16 instructions in the odd pipeline and 20 instructions in the even
pipeline are needed for four modular subtractions. The number of clock cycles
required for a single modular subtraction in practice is roughly five (see Table 1).

Modular Inversion The proposed modular inversion algorithm performs one
single modular inversion using the SIMD instructions of the SPE, with either
two or four active computations at a time. The 128-bit values of Ay, By, As,
and By are stored using the data representation described in Section 4.1 with
w = 32. The initializations A; = p, By = 0, By = 1 do not depend on z.
The initialization of As = x requires eight load and four shuffle instructions to
convert the input.

A shift reduction always starts with at least one of A; and As being odd, by
Equation (4). We do not know which of these might be even, but can examine
both, in a SIMD fashion. The trailing zero bit count of a positive integer A is
the population count of A A (A — 1). The PS3’s population count instruction
acts only on 8-bit data, so our ¢; and ¢, may not be maximal. The PPS3 lets each
vector element have its own shift or rotate count, although a single instruction
cannot rotate some elements while others shift.

Within the subtraction reduction, the four 128-bit differences A1 — A, By —
Bs, A5 — A1, and By — By are evaluated in parallel. We exit the loop if neither
Ay — Ay nor As — A; needs a borrow. Otherwise we update [Aj, B, As, Bo]
appropriately. Subtracting 1 from each element of the borrow vector gives masks
of —1 or 0 depending on the sign of A1 — A5 or Ay — A;. A shuffle of these masks
builds a selector which determines which parts of [41, By, A2, B are updated.

The final multiplication with 2% is done by first looking up this value in
a table and next computing the modular multiplication as outlined in Prop. 1.
Hence, the modular inversion implementation takes as input an 128-bit integer
x and outputs an 128-bit integer z = % mod p with 0 < x, z < p.

5.2 Performance Comparison

In the paper by Giineysu et al. [14] a field-programmable gate array (FPGA)-
based multi-processing hardware architecture for the Pollard rho method tar-
geted at elliptic curves over prime fields is described. Performance details are
stated for a hardware implementation using XC3S1000 FPGAs targeted at field
sizes of varying bit lengths.

Our PS3 implementation is targeted at an elliptic curve over a 112-bit prime
field. We use 128-bit multiplication with fast reduction modulo the 128-bit spe-
cial modulus p. The inversion of 128-bit values is performed modulo the 112-bit

SHARCS ’09 Workshop Record 46

Pollard Rho on the PlayStation 3

prime. Experimental results show that modular multiplication using fast reduc-
tion (see Prop. 1) is roughly 20 percent faster compared to an implementation
of Montgomery multiplication on the SPE architecture. Because 128-bit reduc-
tion is used, we compare our performance results to the FPGA-results of elliptic
curves over 96- and 128-bit generic prime fields [14]. These results are given for
the cost-efficient parallel architecture called COPACABANA [21]. This archi-
tecture can host up to 120 FPGAs at a total cost of approximately US$ 10, 000
including material and production costs. Using this setup, a performance of
3.97 - 107 and 2.08 - 107 iterations per second can be achieved for the 96- and
128-bit versions respectively.

The current price for a PS3, as stated on large web-stores, is around US$ 300.
Hence, for the price of one COPACABANA, 33 PS3s can be purchased. The re-
sulting cluster of PS3s is able to compute 1.4 - 10? iterations per second. The
performance results reported in [14] are dated from 2007. We scale the perfor-
mance results according to Moore’s law [26], i.e. the performance is doubled. The
implementations by Giineysu et al. use the negation map optimization, leading
to a /2 speed-up. The use of this technique results in some overhead related
to the detection and handling of fruitless cycles; the reason why we decided not
to use this technique in our SPE-implementation. Unfortunately, no details are
given related to this overhead. After scaling the COPACABANA performance
numbers by a factor two, due to Moore’s law, and assuming that the negation
map optimization technique is used, leading to a speed-up of a factor v/2, the
PS3 cluster outperforms the COPACABANA machine by a factor 12.4 and 23.8
compared to the 96- and 128-bit versions respectively.

5.3 Solving a 112-bit ECDLP

We solved the ECDLP using the parameters of the standardized curve over a
112-bit prime field using the methods and implementation as explained in this
article. The expected number of iterations is \/? ~ 8.4 -10'6, where n is
the prime order of the base point P as specified in the standard, assuming the
negation map optimization is not used. The real number of required iterations
to solve this ECDLP was only two percent higher. The calculation has been
performed on a PS3 cluster of more than 200 PS3s and started on January 13,
2009 and finished on July 8, 2009. It ran on and off, occasionally interrupted by
other cryptanalytic projects. When run continuously using the latest version of
our code, the same calculation would have taken 3.5 months.

By selecting a DTP property with occurrence of approximately once every
224 points, we needed to store ~ 5.0 - 10° DTPs. Storage of a DTP X = (z,y)
together with the values ¢ and d such that X = ¢P + d@, requires 4 - 112 bits
when storing in an uncompressed format. Hence, the total required storage sums
up to 4-112-5.0 - 10? bits ~ 260 gigabyte. To facilitate collision finding using
standard unix commands the DTPs were stored in plaintext format increasing
the required storage to 615 gigabyte.

47 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

We solved the discrete logarithm with respect to P for the point). The point
P of order n are given in the standard and the z-coordinate of () was chosen as
| (7 — 3)103%]. The points P, Q and the solution to Q = [P are given here:

P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
n = 4451685225093714776491891542548933

Q= 312521636014772477161767351856699 - P

6 Conclusions

We have presented a high-performance PlayStation 3 (PS3) implementation of
the Pollard rho discrete logarithm algorithm on elliptic curves over prime fields.
Arithmetic algorithms have been designed for the SIMD-like architectures such
as the PS3. Using this implementation a record has been set by solving a 112-bit
ECDLP where the parameters are taken from a standardized curve. The time
required to solve this ECDLP instance is 62.6 PS3 years. This shows that given
the easy accessibility and the relatively low price of these game consoles, solving
ECDLPs for this bit-size is practical.

References

1. D. J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-
scalar multiplication. In Finite Fields and Applications, volume 461 of Contempo-
rary Mathematics Series, pages 1-19, 2008.

2. J. W. Bos, N. Casati, and D. A. Osvik. Multi-stream hashing on the PlayStation 3.
PARA 2008, 2008. To appear.

3. J. W. Bos and M. E. Kaihara. Montgomery multiplication on the Cell. PPAM
2009, 2009. To appear.

4. Certicom. Certicom ECC Challenge. See
http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf, 1997.
5. Certicom. Press release: Certicom announces elliptic curve cryptosystem

(ECC) challenge winner. See http://www.certicom.com/index.php/2002-press-
releases/38-2002-press-releases/340-notre-dame-mathematician-solves-eccp-109-
encryption-key-problem-issued-in-1997, 2002.

6. Certicom Research. Standards for Efficient Cryptography 2: Recommended Elliptic
Curve Domain Parameters. Standard SEC2, Certicom, 2000.

7. N. Costigan and P. Schwabe. Fast elliptic-curve cryptography on the Cell broad-
band engine. In Africacrypt 2009, volume 5580 of LNCS, pages 368—385, 2009.

8. N. Costigan and M. Scott. Accelerating SSL using the vector processors in IBM’s
Cell broadband engine for Sony’s Playstation 3. Cryptology ePrint Archive, Report
2007/061, 2007. http://eprint.iacr.org/.

9. B. Dixon and A. K. Lenstra. Fast massively parallel modular arithmetic. In
Proceedings of the 1993 DAGS/PC Symposium, pages 99—-110, 1993.

10. I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log compu-
tation on curves with automorphisms. In Asiacrypt 1999, volume 1716 of LNCS,
pages 103-121, 1999.

SHARCS ’09 Workshop Record 48

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Pollard Rho on the PlayStation 3

B. Flachs, S. Asano, S. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu,
J. Leenstra, J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, and N. Yano. A streaming processor unit for a
Cell processor. IEEE International Solid-State Circuits Conference, pages 134—
135, February 2005.

W. A. P. Forum. Wireless transport layer security specification. See
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-
a.pdf, 2001.

R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Improving the parallelized
Pollard lambda search on anomalous binary curves. Mathematics of Computation,
69(232):1699-1705, 2000.

T. Giineysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic
curve discrete logarithm problem. ACM Transactions on Reconfigurable Technology
and Systems, 1(2):1-21, 2008.

B. Harris. Probability distributions related to random mappings. The Annals of
Mathematical Statistics, 31:1045-1062, 1960.

H. P. Hofstee. Power efficient processor architecture and the Cell processor. In
HPCA 2005, pages 258-262, 2005.

B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transactions
on Computers, 44(8):1064-1065, 1995.

A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic
computers. Number 145 in Proceedings of the USSR Academy of Science, pages
293-294, 1962.

D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, MA, USA, third edition, 1997.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203—
209, 1987.

S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with
COPACOBANA - a cost-optimized parallel code breaker. In CHES 2006, volume
4249 of LNCS, pages 101-118, 2006.

A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of
Cryptology, 14(4):255-293, 2001.

V. S. Miller. Use of elliptic curves in cryptography. In Crypto 1985, volume 218
of LNCS, pages 417426, 1986.

P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519-521, April 1985.

P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48:243-264, 1987.

G. E. Moore. Cramming more components onto integrated circuits. FElectronics,
38:8, 1965.

S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory, 24:106—-110, 1978.

J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of Computation, 32:918-924, 1978.

J.-J. Quisquater and J.-P. Delescaille. How easy is collision search. new results and
applications to DES. In Crypto 1989, volume 435 of LNCS, pages 408413, 1989.
R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120-126, 1978.
C. P. Schnorr and H. W. Lenstra, Jr. A Monte Carlo factoring algorithm with
linear storage. Mathematics of Computation, 43(167):289-311, 1984.

49 SHARCS ’09 Workshop Record

Bos, Kaihara, Montgomery

32

33.

34.

35.

36.

37.

38.

39.

40.

D. Shanks. Class number, a theory of factorization, and genera. In Symposia in
Pure Mathematics, volume 20, pages 415-440, 1971.

J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Gradute Texts
in Mathematics. Springer-Verlag, 1986.

M. Stevens, A. K. Lenstra, and B. de Weger. Predicting the win-
ner of the 2008 US presidential elections using a Sony PlayStation 3.
http://www.win.tue.nl/hashclash /Nostradamus/.

M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and
B. de Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In Crypto 2009, volume 5677 of LNCS, pages 55—69, 2009.

O. Takahashi, R. Cook, S. Cottier, S. H. Dhong, B. Flachs, K. Hirairi, A. Kawa-
sumi, H. Murakami, H. Noro, H. Oh, S. Onish, J. Pille, and J. Silberman. The
circuit design of the synergistic processor element of a Cell processor. In ICCAD
2005, pages 111-117. IEEE Computer Society, 2005.

E. Teske. On random walks for Pollard’s rho method. Mathematics of Computation,
70(234):809-825, 2001.

U.S. Department of Commerce/National Institute of Standards and Technology.
Digital Signature Standards (DSS). FIPS-186-2, Certicom Corp., 2000. See
http://csre.nist.gov /publications/PubsFIPS.html.

P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1-28, 1999.

M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems.
In Selected Areas in Cryptography, volume 1556 of LNCS, pages 190-200, 1998.

SHARCS ’09 Workshop Record 50

