
Selected RNS Bases for Modular Multiplication

J.C. Bajard,
LIRMM, CNRS-Univ. Montpellier2,

France.
bajard@lirmm.fr

M. Kaihara,
EPFL Lausanne,

Switzerland.
marcelo.kaihara@epfl.ch

T. Plantard,
Univ. Wollongong,

Australia.
thomaspl@uow.edu.au

Abstract

The selection of the elements of the bases in an RNS mod-
ular multiplication method is crucial and has a great impact
in the overall performance. This work proposes specific sets
of optimal RNS moduli with elements of Hamming weight
three whose inverses used in the MRS reconstruction have
very small Hamming weight. This property is exploited in
RNS bases conversions, to completely remove and replace
the products by few additions/subtractions and shifts, reduc-
ing the time complexity of modular multiplication. These
bases are specially crafted to computation with operands of
sizes 256 or more and are suitable for cryptographic appli-
cations such as the ECC protocols.

1 Introduction

Since the introduction of Residue Number Systems
(RNS) [23, 24] in computer science, a lot of works have
been done. One of the first applications concerns Digital
Signal Processing (DSP) for computing convolution prod-
ucts in filtering [22, 8]. The motivation originated in the
need of a certain accuracy during the evaluation. In this
context, RNS was found attractive for some part of the cal-
culation, and finding efficient conversion methods from bi-
nary to RNS and from RNS to binary became a challenge.
As the precision needed was not so huge, the RNS bases
were restricted to few moduli [20, 18]. It has always been
a topic of research with some interesting evolutions [7, 12].
A good study can be found in [10].

In public key cryptography as in Diffie-Hellman [11],
RSA [21], Elliptic Curves Cryptography (ECC) [15, 14] and
pairings, the problem settings are different. The numbers
involved are huge and some operations as modular multi-
plication are intensively used. One of the most known algo-
rithm for the modular multiplication which does not require
any division in presented in [16]. This algorithm can be
implemented in RNS using an auxiliary base [19], and was
found efficient only for small integers [1]. Moreover, it is

possible to realize full RNS cryptosystems [2].
The main interests of RNS are due to two facts: They

are well adapted to parallel implementations on different
platforms, such as in GPU [25], and they provide interest-
ing low power architectures [6]. In parallel architectures,
for low power devices, with applications to cryptography,
the challenge is to find RNS bases where all the elements
have the same number of bits and that their inverses, used in
bases extensions, have advantageous properties. The works
presented in the literature, as the one in [5], do not fulfill
all these requirements. The selection of the bases presented
in the current work is clearly devoted to architecture where
multiplication is costly.

This paper is focused on cryptographic applications
where the operands are huge numbers. We present RNS
bases specially crafted to computation with operands of 256
bits or more, suitable for applications such as the ECC pro-
tocols. We consider RNS representations where all the ele-
ments of the bases have the same number of digits; specif-
ically, we focus on bases with 64-bit elements with very
small Hamming weight, allowing good implementation in
software as well as in hardware. We show that it is possi-
ble to construct bases with elements with Hamming weight
three and that these elements can be selected so that a con-
version from one RNS basis to another one, via a Mixed
Radix System, can be performed without any multiplica-
tion, thanks to the property of small Hamming weights of
their inverses. The costs are given by the number of k-bits
additions (e.g., k = 64), thus the cost of a multiplication
by a constant is equivalent to the Hamming weight of this
constant k-bits additions.

Our results are based on an exhaustive search of such
bases, from which we withdraw some theoretical results
about the criteria for selecting RNS bases. The organization
of the paper is the following. Firstly, we introduce the con-
text of this work giving some elements on RNS. Secondly,
we give some elements for calculating the complexity based
on Hamming weight of the operands that we used for the ex-
haustive search. Then, we present our experimental results
of the exhaustive search of adapted bases. Finally, we ex-

2009 19th IEEE International Symposium on Computer Arithmetic

1063-6889/09 $25.00 © 2009 IEEE

DOI 10.1109/ARITH.2009.20

25

plain some theoretical results and discussions inferred from
our experiments.

2 Basic RNS operations

2.1 Introduction to RNS

We consider an RNS base Bn = {m1, ...,mn} (set of

relatively prime numbers) with M =
n∏

i=1

mi. An integer X ,

X ∈ [0,M [, is represented by its residues (x1, x2, . . . , xn)
(i.e., xi = X mod mi). The vector (x1, x2, . . . , xn) is
called the RNS representation of X in the RNS base Bn.

The CRT (Chinese Remainder Theorem) construction
from the RNS representation to a classical representation
is given by the formula:

X =

∣∣∣∣∣

n∑

i=1

∣∣∣xi |Mi|−1
mi

∣∣∣
mi

Mi

∣∣∣∣∣
M

(1)

where Mi = M
mi

, and |Mi|−1
mi

is the inverse of Mi modulo
mi. The notations |.|M or |.|mi

mean respectively modulo
M and modulo mi.

2.2 Conversions RNS ↔ RNS or RNS ↔
Binary

There are mainly two approaches for converting from
RNS to a classical binary representation. One is based on
explicitly applying the CRT, and the other uses as an in-
termediate representation the Mixed Radix System (MRS).
The use of CRT for converting from RNS to a classical rep-
resentation is not convenient due to the large sizes of the
involved operands and the intermediate results. An RNS to
RNS conversion via the formula (1) requires n2 + n modu-
lar word products (i.e., a multiplication modulo one element
of the RNS basis). A priori, with the CRT construction,
it seems difficult to obtain values for |Mi|−1

mi
and Mi with

particular forms that might improve the complexity of the
computation. An idea using divide and conquer approach
was proposed in [26]. However, intermediate values remain
comparable in size to the case of MRS, and only the asymp-
totic complexity is improved with a specific architecture.

In contrast, conversion via the MRS provides better per-
formance, as constant values involved in the computation
are simple and can conveniently be represented to reduce a
multiplication into few additions and shifts.

The MRS Representation of X = (ȧ1, ȧ2, ȧ3, · · · , ȧn) is
given by

ȧ1 = x1
ȧ2 =

˛̨
˛(x2 − ȧ1)m−1

1,2

˛̨
˛
m2

ȧ3 =

˛̨
˛̨
˛(

˛̨
˛(x3 − ȧ1)m−1

1,3

˛̨
˛
m3

− ȧ2)m−1
2,3

˛̨
˛̨
˛
m3

ȧ4 =

˛̨
˛̨
˛̨(

˛̨
˛̨
˛(

˛̨
˛(x4 − ȧ1)m−1

1,4

˛̨
˛
m4

− ȧ2)m−1
2,4)

˛̨
˛̨
˛
m4

− ȧ3)m−1
3,4

˛̨
˛̨
˛̨
m4

.

.

.

ȧn =

˛̨
˛̨
˛(.

˛̨
˛̨(

˛̨
˛(xn − ȧ1)m−1

1,n

˛̨
˛
mn

− ȧ2)m−1
2,n)

˛̨
˛̨
mn

− . − ȧn−1)m−1
n−1,n

˛̨
˛̨
˛
mn

(2)

where m−1
i,j is the inverse of mi modulo mj

Then, the conversion from MRS to classical represen-
tation (or another RNS) is obtained from the formula X =
ȧ1+ȧ2m1+ȧ3m1m2+· · ·+ȧnm1 · · ·mn−1 (for RNS, this
evaluation is done modulo each element of the new RNS
base), or using the Horner’s scheme:

X = ȧ1 + m1 [ȧ2 + m2 [ȧ3 + · · · + mn−2 [ȧn] · · ·]] (3)

A remarkable advantage of this method is that values of
the numbers involved in the computation are bounded by a
relatively small value. The conversion to a new RNS basis
via the MRS can be obtained by applying reduction modulo
each element of the new RNS basis.

2.3 Modular multiplication in RNS

Montgomery reduction scheme for calculating modular
multiplication was introduced in [16]. Here, we consider
the calculation of Montgomery modular multiplication in
RNS. Let A and B be two large numbers represented in
RNS with basis Bn = {m1, ...,mn}. This means that
the values of A and B are less than M =

∏n
i=1 mi, the

product of the elements of the RNS basis. We denote with
(a1, ..., an) and (b1, ..., bn) the respective RNS representa-
tions of A and B.

As the result of a product requires twice the precision
to be correctly represented, we consider an auxiliary base
B′

n = (m′
1, ...,m

′
n) where M ′ =

∏n
i=1 m′

i is the prod-
uct of the values of these elements. Although it is not
mandatory, an equal number of elements is assumed for
both bases. This provides regularity in the hardware archi-
tecture or the software implementation and simplifies the
calculation of the complexity.

In the auxiliary basis, A and B are represented as
(a′1, ..., a′n) and (b′1, ..., b′n) accordingly. We denote with
P the modulus and its representations in the two bases (the
primary and the auxiliary) as (p1, ..., pn) and (p′1, ..., p′n)
respectively. Given P , where P < M < M ′, and
gcd(P,M) = gcd(P,M ′) = gcd(M,M ′) = 1, modular
multiplication, that computes A × B × M−1 (mod P),
can be depicted as following:

1. Calculate the product D of A and B in RNS in the two
bases Bn and B′

n: D = A × B (obtained by mul-

26

tiplying di = |ai × bi|mi
and d′i = |a′i × b′i|m′

i
for

i = 1, ..., n).

2. Perform Montgomery modular reduction modulo P :

(a) Evaluate Q =
∣∣∣D × |P |−1

M

∣∣∣
M

which is obtained

in RNS with qi =
∣∣∣di × |P |−1

mi

∣∣∣
mi

for i =
1, ..., n. These calculations are made only in Bn

, thus Q is obtained modulo M .

(b) Extend the representation of Q to the auxiliary
base B′

n.

(c) Then, evaluate R = (D − Q × P) ×
|M |−1

M ′ in the base B′
n, and compute r′i =∣∣∣(d′i − q′i × p′i)× |M |−1

m′
i

∣∣∣
m′

i

. Thus, R is known

modulo M ′.

(d) Extend the representation of R to the primary
base Bn.

We note that, if A×B < M × P then R < 2P . Hence,
it is required that 2P < M < M ′ (i.e.,4P < M < M ′ if
we use this result in other modular multiplications) .

3 Hamming weight and complexity

The first part of this section describes the Booth recod-
ing system and some theoretical results which provides an
upper bound of the number of trials in an exhaustive search.
The second part describes the cost of the conversion from
RNS to MRS and from MRS to RNS as a function of the
Hamming weight (the number of non zero digits of the rep-
resentation) of the elements of the bases and their inverses.

It is assumed hereafter that the elements of the RNS
bases are represented as: mi = 2k − ci where 0 ≤ ci <
2k/2. Hence, we consider the Hamming weight of the ci

instead of the one of the mi.

3.1 Hamming weight of Booth recoded
bases

The Booth recoding (or NAF2) consists on rewriting se-
ries of consecutive ones (i.e. 0001111100) in radix two rep-
resentation as a power of two minus one (i.e. 0010000100
where 1 represents minus one). After applying this recod-
ing, each integer has a unique representation which does not
contain two successive non-zero digits, and the number of
digits is at most the number of digits of the radix two repre-
sentation plus one.

The following two theorems provide the number of
Booth recoded values with a Hamming weight lower than
a certain bound t.

Theorem 1 The number of k-digit Booth recoded
integers with Hamming weight less or equal to

t, is equal to Tt =
t∑

i=1

2i−1 (k − i− 1)!
(i− 1)!(k − 2i)!

+

2
t−1∑

i=1

2i−1 (k − i− 2)!
(i− 1)!(k − 2i− 1)!

Proof: Consider k digits representations of even integers,
and the alphabet a = 0, b = 10 and c = 10.

Lemma 1 The number of even integers coded with d dig-
its, in the Booth recoded representation with an Ham-
ming weight lower or equal to t is equal to Tt =

t∑

i=1

2i−1 (k − i− 1)!
(i− 1)!(k − 2i)!

.

If the Booth recoded value contains t non-zero digits (i.e.
letters b or c) then the number of letters a is equal to k − 2t
and the total number of letters is k − t. As we consider k
binary digits representations of even integer, the most sig-
nificant digit is fixed to b. Thus, the number of such integers
is equal to Nt = 2t−1 (k−t−1)!

(t−1)!(k−2t)! .
Hence, the number of integers coded with k digits, in the

Booth coded representation with an Hamming weight lower
or equal to t is equal to : Tt =

∑t
i=1 2i−1 (k−i−1)!

(i−1)!(k−2i)!

Lemma 2 Consider odd integers coded with d digits, in
Booth coded representation with an Hamming weight lower
or equal to t. The number of such values is equal to

Tt = 2
t−1∑

i=1

2i−1 (k − i− 2)!
(i− 1)!(k − 2i− 1)!

.

If we consider odd integers, the least significant digit is
fixed to 1 or 1. Thus, the number of values is equal to that of
the even integers on k− 1 digits with t− 1 non-zero digits.

Note that the Lemma 2 gives a bound for an exhaustive
search of RNS bases giving a minimal Hamming weight.
In fact, the elements of the RNS bases are co-prime num-
bers, therefore, only one element can be a power of two; the
others are odd values.

In the sequel, we denote with ω(a) the Hamming weight
of the Booth recoded representation of a.

3.2 Complexity of the conversion from
RNS

The main operation in the conversion from RNS to
MRS, given by equation (2), is the computation of∣∣(y − ai)×m−1

i,j

∣∣
mj

with 0 ≤ y < mj , 0 ≤ ai < mi

and 0 < m−1
i,j < 0.

27

We note that the condition y − ai < 0 might occur; we
then evaluate α = y − ai + mj and β = y − ai + 2mj . If
β ≥ 2k then |y − ai|mj = α, otherwise |y − ai|mj = β .
We also note that, |y − ai|mj < 2k, and reduction modulo
mj of the value V = |y − ai|mj ×m−1

i,j < 22k is required.
This reduction is made in three steps:

1. The value V is split into an upper part Vh and a lower
part Vl such that V = Vh2k + Vl and we compute
V ′ = Vh×cj < 23k/2; it is reminded that |2k|mj = cj .

2. The same reduction is applied to V ′ = V ′
h2k+V ′

l , with
V ′

h < 2k/2 to obtain V ′′ = V ′
h × cj < 2k.

3. Then, W = V ” + V ′
l + Vl ≡ V (mod mj) is ob-

tained where W = Wh2k+Wl is equal to 0, 1 or 2. We
compute A = Whcj +V ′′

l and B = (Wh +1)cj +V ′′
l ,

and represent B = Bh2k + Bl; if Bh = 1 then we
retrieve Bl otherwise we retrieve A.

We note that the third step of this reduction does not need
a multiplication by cj due to the very small value of Wh.
The reduction modulo mj of a value smaller than 22k re-
quires 2ω(cj) + 2 additions of k-bit words.

Theorem 2 The cost of a reduction modulo m = 2k − ci

with 0 ≤ ci < 2k/2, of a value smaller than 22k can be
done with 2ω(ci) + 2 additions of k-bit words.

Hence, the cost of computation of
∣∣(y − ai)×m−1

i,j

∣∣
mj

is

equivalent to ω(m−1
i,j)+2ω(cj)+4 additions of k-bit words.

Each product in the series of equations in (2) is replaced by
few additions/subtractions and shifts as a function of the
Hamming weight of the inverses. A multiplication by an
integer whose Hamming weight is ω can be performed in
ω − 1 additions.

Thus, the total cost of the conversion from RNS to MRS,
given by equation (2), is equivalent, in terms of k-bit word
additions, to:

CostRNS−MRS =
n∑

j=2

j−1∑

i=1

(
ω(m−1

i,j) + 2ω(cj) + 4
)

(4)

The conversion from MRS to RNS is obtained using
equation (3). The main operation in this conversion is the
computation of |ai + mi × y|m′

j
, with 0 ≤ ai ≤ mi − 1

and 0 ≤ y ≤ m′
j − 1.

Thus, the reduction modulo m′
j of V = ai + (c′j − ci)×

y < 2k is made following the previously described proce-
dure (Theorem 2) with 2ω(c′j)+2 additions of k-bit words.

Hence, |ai + mi × y|m′
j

is evaluated with ω(ci) +
2ω(c′j)+2 additions of k-bit words. The total cost required
in the evaluation of the equation (3) is, in term of k-bits
words additions:

CostMRS−RNS =
n∑

j=1

n−1∑

i=1

(
ω(ci) + 2ω(c′j) + 2

)
(5)

The total cost of the RNS bases extension is (as number
of k-bit word additions):

CostRNS−RNS =
n∑

j=2

j−1∑

i=1

(
ω(m−1

i,j) + 2ω(cj) + 4
)

+
n∑

j=1

n−1∑

i=1

(
ω(ci) + 2ω(c′j) + 2

)

(6)

Now, it is also possible to count the complexity in time
and space for a parallel implementation. Assuming n k-bits
word arithmetic units are available, the time complexity in
this case is:

PTCRNS−RNS =
n−1∑

i=1

max
j=2,n;i<j

(
ω(m−1

i,j) + 2ω(cj) + 4
)

+
n−1∑

i=1

max
j=1,n

(
ω(ci) + 2ω(c′j) + 2

)

(7)

3.3 Complexity of the modular multipli-
cation

The RNS Montgomery multiplication algorithm pre-
sented in section 2.3, requires two conversions, one RNS
product on the two bases, one RNS product on the first ba-
sis, two RNS products and one addition on the second basis.

The operations di = |ai × bi|mi
and d′i = |a′i × b′i|m′

i

for i = 1, ..., n, in the RNS multiplication requires a to-
tal of 2n products of k-bit words and 2n reductions of val-
ues lower than 22k which represent

∑n
i=1(2ω(ci) + 2) +∑n

j=1(2ω(c′j) + 2) additions of k-bits words (Theorem 2).

For the calculation of qi =
∣∣∣ci × |P |−1

mi

∣∣∣
mi

for i =
1, ..., n, n products of k-bits words and n reductions are
required which contribute with a cost of

∑n
i=1(2ω(ci) + 2)

k-bits words additions.
The calculation of r′i =

∣∣∣(c′i − q′i × p′i)× |M |−1
m′

i

∣∣∣
m′

i

for

i = 1, ..., n, is obtained with 2n products of k-bits words
and 2n reductions which represent 2

∑n
j=1(2ω(c′j)+2) ad-

ditions of k-bits words (Theorem 2).

28

Thus, the total cost of the presented modular multiplica-
tion is:

CostMMRNS = 5nPk +

(
2

n∑

i=1

(2ω(ci) + 2)

+3
n∑

j=1

(2ω(c′j) + 2) + 2CostRNS−RNS

 Ak

(8)
where Pk represent the cost of one k-bit word product and
Ak the cost of one k-bit word addition.

For a parallel implementation, on n k-bit word arith-
metic units, the time complexity simplifies to:

PTCMMRNS = 5Pk +
(

4 max
i=1,n

(ω(ci))

+6 max
j=1,n

(ω(c′j)) + 2PTCRNS−RNS

)
Ak

(9)

4 Optimal RNS bases

In this section, pairs of RNS bases which provides re-
duced RNS-RNS conversions costs are provided. In his ex-
haustive search, no upper bound are fixed for the mi or their
inverses, only k is fixed to 64, and the only criterion used is
the optimization of the cost (parallel or serial).

These bases are made of four, five and six 64-bit integer
elements and support a large dynamic range (suitable, for
instance, for ECC applications). The optimal RNS bases
which provide the minimum RNS-RNS conversion costs
have been obtained via an exhaustive search. The evalua-
tion of the total conversion costs has been performed us-
ing the previously derived formulae (6) and (7). In order
to try all the possible candidates for finding good bases, we
have considered elements of the type mi = 2k − ci where
ci < 2k/2, so that the reduction procedure is simplified as
described in section 3.2. The bases are then formed with
this type of moduli that are relatively prime to each other.
All possible permutations in the relative positions of the el-
ements have been considered, as this affect the overall per-
formance. We note that the Hamming weights of ci or c′j
contribute quadratically in the equations. Thus, it is not sur-
prising that the elements of the RNS bases which provide
the best complexity are of the form mi = 2k − 2ti ± 1 and
m′

j = 2k−2t′j ±1 (obviously 2k and 2k−1 appear in these
sets).

In a parallel mode, where n k-bit word arithmetic units
are available, the tasks aj ←

∣∣(aj − ai)m−1
i,j

∣∣
mj

, used in
the MRS reconstruction, valid for j > i are executed in par-
allel for all the considered subindeces j ; that is, for each
i, all the tasks for j ∈ [i + 1, n] are performed in parallel.
As a multiplication by the inverse m−1

i,j is replaced by addi-
tions or subtractions, the computation time of all the parallel

tasks for each i, depends on the maximum of the Hamming
weights of these inverses. By imposing an upper bound for
the Hamming weight of the inverses, we were able to obtain
bases that are optimal (in a sense that they provide the min-
imum conversion costs and the minimum Hamming weight
for the inverses).

In a sequential mode, where the above mentioned tasks
are performed successively, the latter restriction is relaxed.
This enabled us to find bases with elements with a few
number of inverses with high Hamming weight (which con-
tribute in a small number of times in the reconstruction of
the MRS coefficients), but having the remaining inverses
with small Hamming weight (which contribute a higher
number of times); thus, reducing the overall conversion
cost.

Given an upper bound for the Hamming weight of the in-
verses, as soon as the inverse produced a Hamming weight
higher than this bound, the entire set is discarded. Hence,
the overall number of evaluations is actually much smaller
than the theoretical upper bound of nn−1

2 (
∏n

i=0 k − i)
evaluations of inverses. We have also considered a second
set where one of the elements is mi = 2k. This gives a
maximum number of nn−1

2

(∏n−1
i=0 k − i

)
evaluations of

inverses. Once the sets are obtained, the costs of the conver-
sions back and forth between the sets are evaluated between
sets with relatively prime elements using formulae (6) and
(7).

As an example, for bases of four elements, the number
of elements of the type mi = 2k − 2ti ± 1 where t < k

2
is, for k = 64, equal to 61. We have then obtained, 2960
sets of relatively prime elements without the element mi =
264 and 1007 sets where one of the elements is mi = 264.
The maximum Hamming weight for the recoded inverses is
four. Thus, 2960 × 1007 evaluations of conversion costs
have been performed. In addition, 2960×2960 conversions
costs have been evaluated to verify that the no pairs of sets
with smaller costs exists when the element mi = 264 is
excluded.

Table 1 summarizes the pairs of sets for optimal RNS
bases with 64-bit elements. Table 2 shows the conversion
costs. In the table, (P) means a parallel mode of operation,
whereas (S) means a sequential mode of operation. We just
give the total cost in number of 64-bits additions. We do
not give the time complexity of a parallel implementation
which should be n times faster than the serial one.

5 Some theoretical results

We note that the inverses obtained from the experimental
search have regular forms. In fact, it is not surprising, as the
bases obtained have specific forms and the inverses m−1

i,j
can easily be inferred. We formalize these remarks in two

29

Table 1. Set of optimal RNS bases
Basis Bn ωmi Basis B′n ωm′

i

RNS bases 264 − 210 − 1 3 264 − 222 − 1 3
4 moduli 264 − 219 − 1 3 264 − 223 − 1 3
(P and S) 264 − 1 2 264 − 222 + 1 3

264 − 228 − 1 3 264 1

264 − 28 − 1 3 264 − 210 + 1 3
RNS bases 264 − 216 − 1 3 264 − 29 − 1 3
5 moduli 264 − 222 − 1 3 264 − 22 + 1 3

(P) 264 − 228 − 1 3 264 − 1 2
264 1 264 − 210 − 1 3

264 − 210 − 1 3 264 − 28 − 1 3
RNS bases 264 − 219 − 1 3 264 − 215 − 1 3
5 moduli 264 − 228 − 1 3 264 − 216 − 1 3

(S) 264 − 220 − 1 3 264 − 1 2
264 1 264 − 222 − 1 3

264 − 210 − 1 3 264 − 226 − 1 3
RNS bases 264 − 216 − 1 3 264 − 218 − 1 3
6 moduli 264 − 219 − 1 3 264 − 225 − 1 3

(P) 264 − 228 − 1 3 264 − 217 − 1 3
264 − 220 − 1 3 264 − 1 2
264 1 264 − 25 − 1 3

264 − 210 − 1 3 264 − 222 − 1 3
RNS bases 264 − 216 − 1 3 264 − 213 − 1 3
6 moduli 264 − 219 − 1 3 264 − 229 − 1 3

(S) 264 − 228 − 1 3 264 − 230 − 1 3
264 − 220 − 1 3 264 − 1 2
264 − 231 − 1 3 264 1

Table 2. Cost of the base extensions
min./max. Bn → B′n B′n → Bn Total
ωinv. MRS ext. MRS ext. cost

4 mod. (P-S) 2/5 45 71 35 79 230
5 mod. (P) 2/11 90 131 96 122 439
5 mod. (S) 2/17 97 128 86 119 430
6 mod. (P) 2/17 159 193 198 182 732
6 mod. (S) 2/20 219 174 131 202 726

theorems. In the first one we present the cases where the
elements have the form 2k, 2k − 1 and 2k − 2t ± 1. The
second theorem is dedicated to pair of elements of the form
2k − 2t ± 1 and 2k − 2t+1 ± 1.

Theorem 3

1. Let k ∈ N∗, then

m1 = 2k,
m2 = 2k − 1

}
⇒

gcd(m1,m2) = 1,
m−1

1,2 ≡ 1,
m−1

2,1 ≡ −1.

2. Let k, t ∈ N∗, then

m1 = 2k,
m3 = 2k − 2t − 1

}
⇒

gcd(m1,m3) = 1,

m−1
3,1 ≡ −

* k
t −1+∑

i=0

(
−2t

)i
.

3. Let k, t ∈ N∗, then

m2 = 2k − 1,
m3 = 2k − 2t − 1

}
⇒

gcd(m2,m3) = 1,
m−1

2,3 ≡ 2k−t − 1,
m−1

3,2 ≡ −2k−t.

4. Let k, t1, t2 ∈ N, then

m3a = 2k − 2t1 − 1,
m3b = 2k − 2t2 − 1
k−t1
t1−t2

∈ N

 ⇒

gcd(m3a,m3b) = 1,

m−1
3a,3b ≡ −

k−t1
t1−t2∑

i=0

(2t1−t2)i,

m−1
3b,3a ≡

k−t1
t1−t2∑

i=1

(2t1−t2)i.

5. Let k, t ∈ N∗, then

m1 = 2k

m4 = 2k − 2t + 1

}
⇒

gcd(m1,m4) = 1,

m−1
4,1 ≡

$ k
t %−1∑

i=0

(2t)i.

6. Let k, t ∈ N∗, then

m2 = 2k − 1
m4 = 2k − 2t + 1
k−1
t−1 ∈ N

 ⇒

gcd(m2,m4) = 1,

m−1
4,2 ≡

k−1
t−1 −1∑

i=0

(2t−1)i.

7. Let k, t ∈ N∗, then

m3 = 2k − 2t − 1
m4 = 2k − 2t + 1

}
⇒

gcd(m3,m4) = 1,
m−1

3,4 ≡ 2k−1 − 2t−1,
m−1

4,3 ≡ 2k−1 − 2t−1.

8. Let k, t1, t2 ∈ N, then

m4a = 2k − 2t1 + 1
m4b = 2k − 2t2 + 1
k−t1
k−t2

∈ N

 ⇒

gcd(m4a, m4b) = 1,

m−1
4a,4b ≡

k−t2
t1−t2X

i=0

(2t1−t2)i,

m−1
4b,4a ≡ −

k−t1
t1−t2X

i=1

(2t1−t2)i.

proof 1 The proofs are given in a report [4].

Table 3 resumes the results presented in Theorem 3, in
terms of Hamming weight with m1 = 2k, m2 = 2k − 1,
m3 = 2k−2t1 −1, m4 = 2k−2t2 −1, m5 = 2k−2t1 +1,
m6 = 2k − 2t2 + 1.

Theorem 4

1. Let k, t ∈ N, then,

m3a = 2k − 2t+1 − 1
m3b = 2k − 2t − 1

}
⇒

gcd(m3a,m3b) = 1,
m−1

3a,3b ≡ −2k−t + 1,
m−1

3b,3a ≡ 2k−t − 2.

30

Table 3. Hamming weight w(m−1
i,j) of the in-

verse of mi modulo mj , with m1 = 2k, m2 =
2k − 1, m3 = 2k − 2t1 − 1, m4 = 2k − 2t2 − 1,
m5 = 2k − 2t1 + 1, m6 = 2k − 2t2 + 1.

mj
mi m1 m2 m3 m4 m5 m6
m1 1
m2 1 2 2

m3

‰
k
t1

ı
1 k−t2

t1−t2
2

m4

‰
k
t2

ı
1 k−t1

t1−t2
2

m5

‰
k
t1

ı
k−1
t1−1 2 k−t1

t1−t2

m6

‰
k
t2

ı
k−1
t2−1 2 k−t1

t1−t2

2. Let k, t ∈ N, then,

m4a = 2k − 2t+1 + 1
m4b = 2k − 2t + 1

}
⇒

gcd(m4a,m4b) = 1,
m−1

4a,4b ≡ 2k−t − 1,
m−1

4b,4a ≡ −2k−t + 2.

3. Let k, t ∈ N∗, then,
m3a = 2k − 2t+1 − 1
m4b = 2k − 2t + 1

k−t
2(t−1) ∈ N

 ⇒

gcd(m3a, m4b) = 1,

m−1
3a,4b ≡ −

k−t
t−1X

i=1

(−2t−1)i.

m3a = 2k − 2t+1 − 1
m4b = 2k − 2t + 1
k−t−1
2(t−1) ∈ N

 ⇒

gcd(m3a, m4b) = 1,

m−1
4b,3a ≡ 2

k−t−1
t−1X

i=1

(−2t−1)i.

4. Let k, t ∈ N∗, then,
m3b = 2k − 2t − 1
m4a = 2k − 2t+1 + 1
k−t−1

t−1 ∈ N

 ⇒

gcd(m3b, m4a) = 1,

m−1
3b,4a ≡ −2

k−t−1
t−1X

i=1

(2t−1)i.

m3b = 2k − 2t − 1
m4a = 2k − 2t+1 + 1
k−t
t−1 ∈ N

 ⇒

gcd(m3b, m4a) = 1,

m−1
4a,3b ≡ −

k−t
t−1X

i=1

(2t−1)i.

proof 2 Most of the cases correspond to corollaries of The-
orem 3, or can be proved using the same schemes.

We present in Table 4 the Hamming weight of the differ-
ent inverses found in Theorem 4.

6 Discussion

Modular multiplication with large modulus is heavily
used in asymmetric key cryptography. For computation-
ally intensive applications, such as signing servers in e-
commerce, acceleration of ECC operations are performed
by using dedicated hardware. One of the main drawbacks
of this approach is that hardware is usually designed for a
fixed prime and scaling it up is usually not supported. In
contrast to this, the use of RNS might overcome such a

Table 4. Hamming weight w(m−1
i,j) of the in-

verse of mi modulo mj , with m1 = 2k, m2 =
2k − 1, m3 = 2k − 2t+1 − 1, m4 = 2k − 2t − 1,
m5 = 2k − 2t+1 + 1, m6 = 2k − 2t + 1.

mj

mi m1 m2 m3 m4 m5 m6

m1 1
m2 1 2 2
m3

⌈
k

t+1

⌉
1 2 2 k−t

t−1

m4

⌈
k
t

⌉
1 2 k−t−1

t−1 2

m5

⌈
k

t+1

⌉
k−1

t 2 k−t
t−1 2

m6

⌈
k
t

⌉
k−1
t−1

k−t−1
t−1 2 2

problem since the prime P of the base field can be mod-
ified even when the RNS bases are fixed, providing flexi-
bility and gradual security levels. Furthermore, since the
bit sizes can be modified, randomization techniques can be
applied on the modulus to increase security against differ-
ential power attacks [17, 3]. That is, before performing the
scalar multiplication on the EC, the modulus is scaled by a
random integer. The result is then normalized to [0, P [.

If we compare our approach with the recommendations
for ECDSA [13] (suggested by the NIST), taking into ac-
count that the cost (conjointly considering area and delay)
of a 64×64-bit multiplier is equivalent to 63 additions of 64-
bit values (which is true in radix 2 with an architecture with-
out multiplier), we obtain for P384 = 2384 − 2128 − 296 +
232−1 a cost of 2365 additions for a modular multiplication
and 1898 additions for P256 = 2256−2224 +2192 +296−1.
We note that the cost is due to a multiplication of big num-
bers, and then a modular reduction is with P384 than with
P256 using the fact that they are sparse. With our approach,
for any P of 320 up to 384 bits (lower than M) with n = 6,
we need 2850 additions (which represents 20% more than
for P384) and 2089 additions for any P of 256 up to 320
bits with n = 5 (which represents 10% more than for P256).
In this comparison, we do not take into account the cost of
the propagation of 64-bits values used in big number arith-
metics. If we compare to the standard Montgomery algo-
rithm [16, 9] or with the previous RNS adaptations [1, 25]
which requires at least 2n2 multiplications of k-bit val-
ues (for 384 that represents 4536 additions and 3150 for
k = 320). If we compare to tha Karatsuba implementation
of [9], taking into account the total cost, we obtain similar
costs with a straightforward architecture.

31

References

[1] J.C. Bajard, L.S. Didier and P. Kornerup, Modular mul-
tiplication and base extension in residue number sys-
tems, 15th IEEE Symposium on Computer Arithmetic,
IEEE Computer Society Press (2001) 59–65

[2] J.C. Bajard, L. Imbert, A full RNS implementation of
RSA, IEEE Transactions on Computers 53:6 (2004)
769–774

[3] J.C. Bajard, L. Imbert, P.Y. Liardet and Y. Teglia, Leak
resistant arithmetic, CHES 2004, LNCS 3156 59–65

[4] J.C. Bajard,M. Kaihara and T. Plantard,
Report: Selected RNS Bases for Modu-
lar Multiplication, http://www.lirmm.fr/ ba-
jard/MesPublis/BKP09Report.pdf

[5] G.C. Cardarilli, M. Re and R. Lojacono, RNS-to-binary
conversion for efficient VLSI implementation, IEEE
Transactions on Circuits and Systems I: Fundamental
Theory and Applications, Volume 45, Issue 6, Jun 1998.

[6] G.C. Cardarilli, A. Nannarelli and M. Re, Residue
Number System for Low Power DSP Applications,
Proc. of 41st Asilomar Conference on Signals, Systems,
and Computers, p. 1412-1416. November 4-7, 2007.

[7] R. Conway and J. Nelson, New CRT-based RNS con-
verter using restricted moduli set, Computers, IEEE
Transactions on On page(s): 572- 578, Volume: 52, Is-
sue: 5, May 2003

[8] E.D. Di Claudio, F. Piazza, and G. Orlandi, Fast com-
binatorial RNS processors for DSP applications, IEEE
Transactions on Computers, page(s): 624-633, Volume:
44, Issue: 5, May 1995

[9] J. P. David, K. Kalach, and N. Tittley, Hardware Com-
plexity of Modular Multiplication and Exponentiation
IEEE Transactions on Computers, Vol. 56, No. 10, Oc-
tober 2007

[10] L.-S. Didier and P.-Y. Rivaille, A generalization of a
Fast RNS conversion for a new 4-modulus base, to ap-
pear in EEE transactions on Circuits and Systems II.

[11] W. Diffie and M.E. Hellman, New directions in cryp-
tography, IEEE Transactions on Information Theory 22
(1976), 644-654.

[12] M. Hosseinzadeh, S.J. Jassbi and K. Navi, A New
Moduli Set 3n − 1, 3n + 1, 3n + 2, 3n − 2 in Residue
Number System, 10th ICACT 2008. Volume 3, 17-20
Feb. 2008 Page(s):1601 - 1603

[13] D. Johnson and A. Menezes The Elliptic
Curve Digital Signature Algorithm (ECDSA)
http://www.cacr.math.uwaterloo.ca/techreports/...
...1999/tech reports99.html

[14] N. Koblitz Elliptic Curve Cryptosystems Mathematics
of Computation, Vol. 48, No. 177. (Jan., 1987), pp. 203-
209.

[15] V. S Miller Use of elliptic curves in cryptography
LNCS 218 on Advances in cryptology—CRYPTO 85
Santa Barbara, California, US P.: 417 - 426, 1986.

[16] P.L. Montgomery, Modular multiplication without
trial division. Mathematics of Computation, 44:170
(1985) 519–521

[17] M. Ciet, M. Neve, E. Peeters and J.J. Quisquater, Par-
allel FPGA implementation of RSA with residue num-
ber systems– can side-channel threats be avoided? 46th
IEEE Int. MW Symp. on Circuits and Systems (2003)

[18] S. J. Piestrak, A high-speed realization of a residue to
binary number system converter, IEEE Trans. Circuits
Syst. II, vol. 42, pp. 661-663, Oct. 1995.

[19] K.C. Posch and R. Posch, Modulo reduction in residue
number systems. IEEE Transaction on Parallel and Dis-
tributed Systems, 6:5 (1995) p.: 449–454

[20] A. B. Premkumar, An RNS to binary converter in 2n−
1, 2n, 2n + 1 moduli set, IEEE Trans. Circuits Syst. II,
vol. 39, pp. 480-482, July 1992.

[21] R. Rivest, A. Shamir and L. Adleman. A Method
for Obtaining Digital Signatures and Public-Key Cryp-
tosystems. Communications of the ACM, Vol. 21 (2),
pp.120-126. 1978

[22] M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, and F.J.
Taylor, Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing, eds. IEEE
Press, 1986

[23] A. Svoboda and M. Valach, Operational Circuits.
Stroje na Zpracovani Informaci, Sbornik III, Nakl.
CSAV, Prague, 1955, pp.247-295.

[24] N.S. Szabo and R.I. Tanaka, Residue Arithmetic and
its Applications to Computer Technology. McGraw-
Hill (1967)

[25] R. Szerwinski and T. Güneysu, Exploiting the Power
of GPUs for Asymmetric Cryptography CHES 2008,
LNCS 5154, pp. 79-99, 2008

[26] Y. Wang, New Chinese remainder theorems, Thirty-
Second Asilomar Conference on Signals, Systems &
Computers, 1998, page(s): 165-171 vol.1

32

