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Abstract. A technique to speed up Montgomery multiplication tar-
geted at the Synergistic Processor Elements (SPE) of the Cell Broad-
band Engine is proposed. The technique consists of splitting a number
into four consecutive parts. These parts are placed one by one in each of
the four element positions of a vector, representing columns in a 4-SIMD
organization. This representation enables arithmetic to be performed in
a 4-SIMD fashion. An implementation of the Montgomery multiplication
using this technique is up to 2.47 times faster compared to an unrolled
implementation of Montgomery multiplication, which is part of the IBM
multi-precision math library, for odd moduli of length 160 to 2048 bits.
The presented technique can also be applied to speed up Montgomery
multiplication on other SIMD-architectures.
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1 Introduction

Modular multiplication is one of the basic operations in almost all modern public-
key cryptographic applications. For example, cryptographic operations in RSA
[13], using practical security parameters, requires a sequence of modular multi-
plications using a composite modulus ranging from 1024 to 2048 bits. In elliptic
curve cryptography (ECC) [9,11], the efficiency of elliptic curve arithmetic over
large prime fields relies on the performance of modular multiplication. In ECC,
the length of most commonly used (prime) moduli ranges from 160 to 512 bits.

Among several approaches to speed up modular multiplication that have
been proposed in the literature, a widely used choice is the Montgomery mod-
ular multiplication algorithm [12]. In the current work, we study Montgomery
modular multiplication on the Cell Broadband Engine (Cell). The Cell is an het-
erogeneous processor and has been used as a cryptographic accelerator [5,1,3,4]
as well as for cryptanalysis [2,14].

In this article, a technique to speed up Montgomery multiplication that ex-
ploits the capabilities of the SPE architecture is presented. This technique con-
sists of splitting a number into four consecutive parts which are placed one by
one in each of the four element positions of a vector. These parts can be seen



as four columns in a 4-SIMD organization. This representation benefits from
the features of the Cell, e.g. it enables the use of the 4-SIMD multiply-and-add
instruction and makes use of the large register file. The division by a power of
2, required in one iteration of Montgomery reduction, can be performed by a
vector shift and an inexpensive circular change of the indices of the vectors that
accumulate the partial products. Our experimental results show that an imple-
mentation of Montgomery multiplication, for moduli of sizes between 160 and
2048 bits, based on our newly proposed representation is up to 2.47 times faster
compared to an unrolled implementation of Montgomery multiplication in the
IBM’s Multi-Precision Math (MPM) Library [7].

The article is organized as follows. In Section 2, a brief explanation of the
Cell broadband engine architecture is given. In Section 3, we describe the Mont-
gomery multiplication algorithm. In Section 4, our new technique for Mont-
gomery multiplication is presented. In Section 5 performance results of different
implementations are given. Section 6 concludes this paper.

2 Cell Broadband Engine Architecture

The Cell architecture [6], developed by Sony, Toshiba and IBM, has as a main
processing unit, a dual-threaded 64-bit Power Processing Element (PPE) and
eight Synergistic Processing Elements (SPEs). The SPEs are the workhorses of
the Cell and the main interest in this article. The SPE consist of a Synergistic
Processor Unit (SPU) and a Memory Flow Controller (MFC). Every SPU has
access to a register file of 128 entries, called vectors or quad-words of 128-bit
length, and a 256 kilobyte Local Store (LS) with room for instructions and
data. The main memory can be accessed through explicit direct memory access
requests to the MFC. The SPUs have a 128-bit SIMD organization allowing
sixteen 8-bit, eight 16-bit or four 32-bit integer computations in parallel. The
SPUs are asymmetric processors that have two pipelines denoted as even and odd
pipelines. This means that two instructions can be dispatched every clock cycle.
Most of the arithmetic instructions are executed on the even pipeline and most
of the memory instructions are executed on the odd pipeline. It is a challenge to
fully utilize both pipelines always at the same time. The SPEs have no hardware
branch-prediction. Instead, hints can be provided by the programmer (or the
compiler) to the instruction fetch unit that specifies where a branch instruction
will jump to.

An additional advantage of the SPE architecture is the availability of a rich
instruction set. With a single instruction, four 16-bit integer multiplication can
be executed in parallel. An additional performance improvement may be achieved
with the multiply-and-add instruction which performs a 16 × 16-bit unsigned
multiplication and an addition of the 32-bit unsigned operand to the 32-bit
multiplication result. This instruction has the same latency as a single 16× 16-
bit multiplication and requires the 16-bit operands to be placed in the higher
positions of the 32-bit sections (carries are not generated for this instruction).



Algorithm 1 Radix-r Montgomery Multiplication[12].
Input: M : rn−1 ≤M < rn, 2 - M

X,Y : 0 ≤ X,Y < M
Output: Z = X · Y ·R−1 mod M

1: Z = 0
2: for i = 0 to n− 1 do
3: Z = Z + yi ·X
4: q = (−Z ·M−1) mod r
5: Z = (Z + q ·M)/r
6: end for
7: if Z ≥M then
8: Z = Z −M
9: end if

One of the first applications of the Cell processor was to serve as the heart
of Sony’s PS3 video game console. The Cell contains eight SPEs, and in the
PS3 one of them is disabled. Another SPEs is reserved by Sony’s hypervisor (a
software layer which is used to virtualize devices and other resources in order to
provide a virtual machine environment to, e.g., Linux OS). In the end, six SPEs
can be accessed when running Linux OS on the PS3.

3 Montgomery Modular Multiplication

The Montgomery modular multiplication method introduced in [12] consists of
transforming each of the operands into a Montgomery representation and carry
out the computation by replacing the conventional modular multiplications by
Montgomery multiplications. This is suitable to speed up, for example, modular
exponentiations which can be decomposed as a sequence of several modular
multiplications. One of the advantages of this method is that the computational
complexity is usually better compared to the classical method by a constant
factor.

Given an n-word odd modulus M , such that rn−1 ≤M < rn, where r = 2w

is the radix of the system, and w is the bit length of a word, and an integer
X =

∑n−1
i=0 xi·2w·i, then the Montgomery residue of this integer is defined as X̃ =

X ·R mod M . The Montgomery radix R, is a constant such that gcd(R,M) = 1
and R > M . For efficiency reasons, this is usually adjusted to R = rn. The
Montgomery product of two integers is defined as M(X̃, Ỹ ) = X̃ ·Ỹ ·R−1 mod M .
If X̃ = X ·R mod M and Ỹ = Y ·R mod M are Montgomery residues of X and Y ,
then Z̃ = M(X̃, Ỹ ) = X ·Y ·R mod M is a Montgomery residue of X ·Y mod M .
Algorithm 1 describes the radix-r interleaved Montgomery algorithm.

The conversion between the ordinary representation of an integer X to the
Montgomery representation X̃ can be performed using the Montgomery algo-
rithm by computing X̃ = M(X,R2), provided that the constant R2 mod M is
pre-computed. The conversion back from the Montgomery representation to the



ordinary representation can be done by applying the Montgomery algorithm to
the result and the number 1, i.e. Z = M(Z̃, 1).

In cryptologic applications, where modular products are usually performed
succeedingly, the final conditional subtraction, which is costly, is not needed
until the end of a series of modular multiplications [15]. In order to avoid the
last conditional subtraction (lines 7 to 9 of Algorithm 1), R is chosen such that
4M < R and inputs and output are represented as elements of Z/2MZ instead of
Z/MZ, that is, operations are carried out in a redundant representation. It can
be shown that throughout the series of modular multiplications, outputs from
multiplications can be reused as inputs and these values remain bounded. This
technique does not only speed-up modular multiplications but also prevents the
success of timing attacks [10] as operations are data independent [15].

4 Montgomery Multiplication on the Cell

In this section, we present an implementation of the Montgomery multiplication
algorithm that takes advantage of the features of the SPE; e.g. the SIMD ar-
chitecture, the large register file and the rich instruction set. The multiplication
algorithm implemented in the MPM library uses a radix r = 2128 to represent
large numbers. Each of these 128-bit words is in turn represented using a vec-
tor of four consecutive 32-bit words in a SIMD fashion. One drawback of this
representation is that operands whose sizes are slightly larger than a power of
2128 require an entire extra 128-bit word to be processed, waisting computa-
tional resources. Another drawback is that the addition of the resulting 32-bit
product to a 32-bit value might produce a carry which is not detected. In con-
trast to the addition instruction, there is no carry generation instruction for the
multiply-and-add operation and is not used in the Montgomery multiplication
of the MPM library.

The technique we present uses a radix r = 216 which enables a better division
of large numbers into words that match the input sizes of the 4-SIMD multipliers
of the Cell. This choice enables the use of the following property, and hence
the multiply-and-add instruction: If a, b, c, d ∈ Z and 0 ≤ a, b, c, d < r, then
a ·b+c+d < r2. Specifically, when r = 216, this property enables the addition of
a 16-bit word to the result of a 16× 16-bit product (used for the multi-precision
multiplication and accumulation) and an extra addition of 16-bit word (used for
16-carry propagation) so that the result is smaller than r2 = 232 and no overflow
can occur. We will assume hereafter that the radix r = 216.

Given an odd 16n-bit modulus M , i.e. r(n−1) ≤ M < rn, a Montgomery
residue X, such that 0 ≤ X < 2M < r(n+1), is represented using s =

⌈
n+1

4

⌉
vectors of 128 bits. The extra 16-bit word is considered in the implementation
because the intermediate accumulating result of Montgomery multiplication can
be up to 2M . The Montgomery residue X is represented using a radix r system,
i.e. X =

∑n
i=0 xi · ri. On the implementation level the 16-bit words xi are stored

column-wise in the s 128-bit vectors Xj , where j ∈ [0, s − 1]. The four 32-bit
parts of such a vector are denoted by Xj = {Xj [0], Xj [1], Xj [2], Xj [3]}, where



X =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

Xs−1 =

128-bit legth vectorz }| {
16-bit| {z }
high

16-bit| {z }
low

x3s−1 x2s−1 xs−1

...
...

Xj =
x3s+i x2s+i xs+i xi

...
...

X0 =
x3s x2s xs x0| {z }

the least significant 16-bit word of X

Fig. 1. The 16-bit words xi of a 16(n+ 1)-bit positive integer X =
Pn

i=0 xi · ri < 2M
are stored column-wise using s =

˚
n+1

4

ˇ
128-bit vectors Xj on the SPE architecture.

Xj [0] and Xj [3] contain the least and most significant 32-bits of Xj respectively.
Each of the (n+ 1) 16-bit words xi of X is stored in the most significant 16 bits
of Xi mod s[

⌊
i
s

⌋
]. A graphical representation of this arrangement is provided in

Figure 1. We follow hereafter the same notation to represent the long integer
numbers used.

The Montgomery multiplication algorithm using this representation is de-
scribed in Algorithm 2. The algorithm takes as inputs the modulus M of n
words and the operands X and Y of (n + 1) words. The division by r, which
is a shift by 16 bits of the accumulating partial product U , is implemented as
a logical right shift by 32 bits of the vector that contains the least significant
position of U and a change of the indices. That is, during each iteration, the
indices of the vectors that contain the accumulating partial product U change
circularly among the s registers without physical movement of data. In Algo-
rithm 2, each 16-bit word of the inputs X, Y and M and the output Z is stored
in the upper part (the most significant 16 bits) of each of the four 32-bit words
in a 128-bit vector. The vector µ stores the replicated values of (−M)−1 mod r
in the lower 16-bit positions of the words. The temporary vector K stores in the
most significant 16-bit positions the replicated values of yi, i.e. each of the parsed
coefficients of the multiplier Y corresponding to the i-th iteration of the main
loop. The operation A←muladd(B, c, D), which is a single instruction on the
SPE, represents the operation of multiplying the vector B (where data are stored
in the higher 16-bit positions of 32 bit words) by a vector with replicated 16-bit
values of c across all higher positions of the 32-bit words. This product is added
to D and the overall result is placed into A. The temporary vector V stores the
replicated values of u0 in the least significant 16-bit words. This u0 refers to the
least significant 16-bit word of the updated value of U , i.e. U =

∑n
j=0 uj · rj

represented by s vectors of 128-bit Ui mod s, Ui+1 mod s, . . . , Ui+n mod s following
the above explained notation (i refers to the index of the main loop). The vector



Algorithm 2 Montgomery Multiplication Algorithm for the Cell

Input:

8>>>><>>>>:
M represented by s 128-bit vectors: Ms−1, . . . ,M0, such that
rn−1 ≤M < rn, 2 - M, r = 216

X represented by s 128-bit vectors: Xs−1, . . . , X0,
Y represented by s 128-bit vectors: Ys−1, . . . , Y0, such that 0 ≤ X,Y < 2M
µ : a 128-bit vector containing (−M)−1 mod r replicated in all 4 elements.

Output:


Z represented by s 128-bit vectors: Zs−1, . . . , Z0, such that

Z ≡ X · Y · r−(n+1) mod M, 0 ≤ Z < 2M

1: for j = 0 to s− 1 do
2: Uj = 0
3: end for
4: for i = 0 to n do
5: K = {yi, yi, yi, yi}
6: for j = 0 to s− 1 do
7: U(i+j) mod s = muladd(Xj , K, U(i+j) mod s)
8: end for
9: Perform 16-carry propagation on U(i+j) mod s for j = 0, . . . , s− 1

10: V = {u0, u0, u0, u0}
11: Q =shiftleft(mul(V , µ), 16) /* Q = V · µ mod r */
12: for j = 0 to s− 1 do
13: U(i+j) mod s = muladd(Mj , Q, U(i+j) mod s)
14: end for
15: Perform 16-carry propagation on U(i+j) mod s for j = 0, . . . , s− 1
16: Ui mod s =vshiftright(Ui mod s, 32) /* Vector logical right shift by 32 bits*/
17: end for
18: Perform carry propagation on Ui mod s for i = n+ 1, . . . , 2n+ 1
19: for j = 0 to s− 1 do
20: Zj = U(n+j+1) mod s /* Place results in higher 16-bit positions*/
21: end for

Q is computed as an element-wise logical left shift by 16 bits of the 4-SIMD
product of vectors V and µ.

The propagation of the higher 16-bit carries of U(i+j) mod s described in lines
9 and 15 consist of extracting the higher 16-bit words of these vectors and placing
them into the lower 16-bit positions of temporary vectors. These vectors are then
added to U(i+j+1) mod s correspondingly. The operation is carried out for the vec-
tors with indices j ∈ [0, s− 2]. For j = s− 1, the temporary vector that contains
the words is logically shifted 32 bits to the left and added to the vector Ui mod s.
Similarly, the carry propagation of the higher words of U(i+j) mod s described in
line 18 is performed with 16-bit word extraction and addition, but requires a
sequential parsing over the (n+1) 16-bit words. Note that U is represented with
vectors whose values are placed in the lower 16-bit word positions.



Bit-size This work MPM
Ratio

Unrolled
Ratio

of moduli (ns) (ns) MPM (ns)

192 174 369 2.12 277 1.59

224 200 369 1.85 277 1.39

256 228 369 1.62 277 1.21

384 339 652 1.92 534 1.58

512 495 1,023 2.07 872 1.76

1024 1,798 3,385 1.88 3,040 1.69

2048 7,158 12,317 1.72 11,286 1.58

Table 1. Performance results, expressed in nanoseconds, for the computation of one
Montgomery multiplication for different bit-sizes on a single SPE on a PlayStation 3.

5 Experimental Results

In this section, performance comparison of different software implementations of
the Montgomery multiplication algorithm running on a single SPE of a PS3 using
moduli of varying bit lengths is presented. The approach described in Section 3
is compared to the implementation in the Multi-Precision Math (MPM) Library
[7]. The MPM library is developed by IBM and part of the software development
kit [8] for the Cell. MPM consists of a set of routines that perform arithmetic on
unsigned integers of a large number of bits. According to [7]: “All multi-precision
numbers are expressed as an array of unsigned integer vectors (vector unsigned
int) of user specified length (in quadwords). The numbers are assumed to be big
endian ordered”.

To enhance the performance and avoid expensive conditional branches, a
code generator has been designed. This generator takes as input the bit-size
of the modulus and outputs the Montgomery multiplication code in the C-
programming language that uses the SPU-intrinsics language extension. Such a
generator has been made for both our approach as well as for the implementation
of Montgomery multiplication in the MPM library. We refer to this faster ver-
sion of MPM as unrolled MPM. The computational times, in nanoseconds, of a
single Montgomery multiplication for cryptographically interesting bit sizes, are
given in Table 1. Our Montgomery implementation is the subtraction-less variant
(suitable for cryptographic applications) while the MPM version is the original
Montgomery multiplication including the final subtraction. A subtraction-less
variant of the MPM implementation is significantly slower since it requires the
processing of an entire 128-bit vector for one extra bit needed to represent the
operands in the interval of values [0, 2M). Thus, it is not considered in our
comparison.

The performance results include the overhead of benchmarking, function
calls, loading and storing the inputs and output back and forth between the
register file and the local store. The stated ratios are the (unrolled) MPM results
versus the new results. Figure 4 presents the overall speed-up ratios, compared
to the unrolled implementation of MPM. Every 128 bits a performance peak
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Fig. 2. The speed-up of the new Montgomery multiplication compared to the unrolled
Montgomery multiplication from MPM.

can be observed in the figure, for moduli of 128i + 16 bits. This is because the
(unrolled) MPM implementations work in radix r = 2128 and requires an entire
128-bit vector to be processed for these extra 16 bits. This peak is more con-
siderable for smaller bit-lengths because of the significant relative extra work
compared to the amount of extra bits. This effect becomes less noticeable for
larger moduli. The drop in the performance ratio of our algorithm, that occurs
every multiple of 64 bits in Figure 4, can be explained by the fact that mod-
uli of these bit sizes require an extra vector to hold the number in redundant
representation. Despite this fact our implementation outperforms the unrolled
MPM (which is faster compared to generic MPM) because it only iterates over
the 16-bit words that contain data. The only bit sizes where the unrolled MPM
version is faster compared to our approach are in the range [112, 128]. This is
due to a small constant overhead built in our approach and becomes negligible
for larger bit-lengths. The maximal speed-up obtainable from our approach is
2.47 times compared to the unrolled Montgomery multiplication of the MPM
library and occurs for moduli of size 528 bit.



6 Conclusions

We have presented a technique to speed up Montgomery multiplication on the
SPEs of the Cell processor. The technique consist of representing the integers by
grouping consecutive parts. These parts are placed one by one in each of the four
element positions of a vector, representing columns in a 4-SIMD organization.
In practice, this leads to a performance speed-up of up to 2.47 compared to
an unrolled Montgomery multiplication implementation as in the MPM library
for moduli of sizes 160 to 2048 bits which are of particular interest for public-
key cryptography. Although presented for the Cell architecture, the proposed
techniques can also be applied to other SIMD architectures.
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